

ICFNDS '19, July 1–2, 2019, Paris, France

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7163-6/19/07…$15.00

https://doi.org/10.1145/3341325.3341995

Cloud Computing With Kubernetes Cluster Elastic

Scaling

Brandon Thurgood

Dept. of Computing

Letterkenny Institute of Technology

Letterkenny, Co. Donegal, Ireland

Brandon.Thurgood@outlook.com

Ruth G. Lennon

Dept. of Computing

Letterkenny Institute of Technology

Letterkenny, Co. Donegal, Ireland

Ruth.Lennon@lyit.ie

Abstract—Cloud computing and artificial intelligence (AI)

technologies are becoming increasingly prevalent in the

industry, necessitating the requirement for advanced platforms

to support their workloads through parallel and distributed

architectures. Kubernetes provides an ideal platform for

hosting various workloads, including dynamic workloads based

on AI applications that support ubiquitous computing devices

leveraging parallel and distributed architectures. The rationale

is that Kubernetes can be used to support backend services

running on parallel and distributed architectures, hosting

ubiquitous cloud computing workloads. These applications

support smart homes and concerts, providing an environment

that automatically scales based on demand. While Kubernetes

does offer support for auto scaling of Pods to support these

workloads, automated scaling of the cluster itself is not

currently offered. In this paper we introduce a Free and Open

Source Software (FOSS) solution for autoscaling Kubernetes

(K8s) worker nodes within a cluster to support dynamic

workloads. We go on to discuss scalability issues and security

concerns both on the platform and within the hosted AI

applications.

Keywords—Autoscaling, Kubernetes, Artificial Intelligence,

parallel and distributed architectures, Infrastructure as a Service,

Container as a Service

I. INTRODUCTION

Devices that are compatible with ubiquitous computing
are typically small in order to allow them to remain
unobtrusive, which generally limits their processing power
and ability to run Artificial Intelligence (AI) based
applications. AI applications processing the information from
devices on the sensor network allow the devices to adapt to
the environment efficiently as more data becomes available.
Transferring the data to and from the sensor network can be
achieved by leveraging technologies such as Radio Frequency
Identification (RFID) technology, Wireless Sensor Networks
(WSN) or Near Field Communication (NFC) devices [1].
Another method that can be used to overcome this limitation
is to leverage a single device within the sensor network
capable of internet connectivity, such as a smartphone or
tablet device. A single device with internet connectivity within
the sensor network could allow ubiquitous devices to
communicate with cloud-based systems by leveraging the
device as a proxy. The cloud-based system can then perform
more complex computations of the data and communicate
results with the devices and surrounding architecture, while
also improving user experience.

Ubiquitous computing devices such as Wi-Fi, RFID or
WSN enabled armbands sold in the form of concert tickets can

communicate directly with containerized AI applications
hosted on the Kubernetes cloud platforms, providing valuable
information that can be used to both track and predict crowd
movement. Crowd movement detection can be achieved
through several methods such as video-based or signal-based
identification methods. Video-based methods such as Mid
Based Foreground Segmentation and Head-Shoulder
Detection [2] are costly to implement as they require both
cameras and vast amounts of storage to host the video files.
Signal-based methods for detecting crowd movement
typically function upon radio frequency identification (RFID)
[3] tags requiring dedicated sensing equipment to be placed at
the venue. At present, there is a promising method for
detecting the number of people in a queue by utilizing the
widespread Wi-Fi signal to extract the received signal strength
(RSS) or channel state information (CSI) [4], however these
methods are unlikely suited for dense crowd counting and
movement detection within confined spaces. While a
combination of these crowd movement methods could
possibly be leveraged to communicate with applications
hosted on cloud architecture, this paper focuses on the elastic
scaling of a Kubernetes cluster based on demand.

Allowing interconnected systems to respond to certain
types of crowd movements by changing the environment hosts
a plethora of possibilities. Should an environment be able to
adjust to certain types of crowd movements, for instance by
widening or opening additional doorways, not only could user
experience be improved, overcrowding hazards could also be
prevented.

Smart homes connected via sensors to containerized AI-
based applications running on Kubernetes could improve
living experiences of users by automatically adjusting the
environment within the home. Adjusting elements such as
lighting, temperature and music to the needs of the user could
vastly improve experience in an unobtrusive manner.
Ubiquitous computing within the home powered by
Kubernetes and its ability to auto scale provides endless
possibilities to automating and improving living experiences.

As more devices join the network, the cloud-based system
in turn is required to scale in accordance with load in order to
maintain stability and provide the best user experience in a
sustainable method. While commercial cloud-based solutions
such as Google Kubernetes Engine (GKE) provide this
functionality in public clouds, as of the time of writing no free
and open source solution existed for elastically scaling private
cloud or on-premise K8s clusters. This paper introduces a Free
/ Open-Source Software (FOSS) solution based on Kubernetes
(K8s). The Infrastructure as a Service (IaaS) layer of this

solution is currently based on VMware vSphere technology in
a private cloud model which is both proprietary and costly,
however the solution can easily be adapted to leverage
platforms such as oVirt or libvirt to make it entirely FOSS,
with only the likes of server and networking hardware
incurring cost. The solution is also adaptable to elastically
scale into hybrid cloud architectures and leverage edge
computing.

II. RELATED WORK

Cloud computing can take many forms, supporting various

devices which are backed by a myriad of supporting

infrastructure.

A. Ubiquitous Computing

While ubiquitous computing is intended to work
transparently to the user [5], advanced levels of computation
are required for the solution to remain effective, which the
sensor devices are typically incapable of. Having a single
device on the sensor network capable of internet
communication will allow the sensor data to be uploaded to
the cloud and analysed before instructions are made available
for the devices to download and execute. In order to achieve
these advanced levels of computation and AI processing a
containerized cloud-based system [6] running on Kubernetes
is proposed. This solution will need to auto-scale based on
load, as it would be difficult to predict load on the system as
users interact more and move in and out of network coverage
areas, as is the norm in ubiquitous computing.

B. Edge and Fog Computing

Edge computing, commonly referred to as just “edge”,

brings processing close to the data source, eliminating the

need for the data to be sent to a remote cloud or other

centralized system for processing. Elimination of the distance

and time it takes to transport data to centralized sources

improves the speed and performance of data transport which

in turn improves applications performance on the edge. Edge

computing can potentially address the concerns of response

time and bandwidth constraints inherent with cloud

computing [7].

Fog computing is a defined standard of how edge

computing should work. It facilitates the operation of

compute, storage and networking services between edge

devices and cloud computing hosted in the datacentre.

C. Infrastructure as a Service

Cloud-based systems capable of elastically scaling [8]

and interacting with ubiquitous computing sensor networks

require an Infrastructure as a service component such as

VMware vSphere to run the workloads. This layer provides

computational abilities far beyond that of individual

ubiquitous computing devices on the sensor network and

provides an environment for the Kubernetes cluster nodes to

both run and scale. Thus, IaaS can be exploited to support

Ubiquitous Computing.

D. Container as a Service

Artificial intelligence components of ubiquitous

computing systems should run in containerized environments

following 12-factor designs. This design will allow them to

scale as required and to accommodate the unpredictable load

sensor networks will place on the system [9]. Kubernetes

provides an ideal platform for this type of workload. While

K8s does provide a scaling service known as the Horizontal

Pod Autoscaler (HPA), functionality to elastically scale the

number of cluster worker nodes is not currently offered

within the platform itself. The clusters ability to

automatically scale would enable scaling support for

ubiquitous computing beyond the limits of the cluster, not

only on the user facing components but on the operational

and supporting services as well. In order to successfully

support ubiquitous computing, it is proposed that all elements

of the system elastically scale vertically and horizontally on

demand. Horizontal scaling will be implemented in the form

of increasing compute resources through additional worker

nodes rather than vertical scaling which entails adding

resources to existing nodes. Horizontal scaling was selected

as it requires zero downtime as apposed to vertical scaling

which requires hosts to be powered down before adding

additional resources.

E. Distributed Architecture

Distributed architecture is a software system with

interconnections between a collection of independent

systems. Coordination and communication is established

between the systems through API calls or message passing,

with the intention of achieving a common goal. This type of

architecture can be leveraged extensively in various designs

including but not limited to application, infrastructure and

network design [10].

F. Artificial Intelligence

Artificial intelligence technologies are becoming

increasingly prevalent, with their impact on individuals and

societies varying widely [11]. While AI has no generally

accepted definition, the term obscures the actual mechanism,

with the possibility of hiding untrustworthy methods [11].

Implementation of AI methods without rigorous integrity can

lead to devices and systems that are untrustworthy and

sometimes dangerous [12]. Systems that are aware of the

location of dense crowds of people and which control

mechanisms such as opening and closing of doors can have

profound negative impact if not implemented in a failsafe

trustworthy manner.

III. PROPOSED SYSTEM AND ITS PARAMETERS

Cloud and ubiquitous computing in the context of this
paper may take the form of a smart home with interconnected
devices throughout, consisting of the user wearing a smart
watch that interacts with distributed sensors, all
communicating via Wi-Fi with the containerized AI
application hosted on Kubernetes. The sensor network could
not only turn lights on when a room in entered, a variety of
other functions could be performed based on the constantly
uploaded sensor data to the Kubernetes cloud platform which
processes the data and can provide constant feedback to the
sensor network. The AI applications could trigger actions such

as setting of ambient lighting or relaxing music based on
mood, posture or a variety of other factors.

Having the ubiquitous computing sensor network respond
to both physical motions, number of inhabitants and various
other inputs would allow for a fully interactive experience in
an unobtrusive manner. As the number of users interacting
with the platform are likely to fluctuate, as family and guests
come and go, or new sensor networks are onboarded, the
platform is able to automatically scale both in the form of
containers spinning up as required within the cluster, and the
cluster itself scaling new worker nodes as the number of
containers consume the capacity of the cluster.

Another scenario in which ubiquitous computing devices
can leverage the cloud platform would be through the form of
sensor network connected armbands sold as concert tickets.
As users enter the arena, the platform could be used to track
the number of concertgoers entering the stadium, which
entrances were used, compressed areas within the arena that
require attention as well as several other use cases, particularly
in emergency situations should they arise. Having a flood of
devices either join or leave the network requires a platform
that can elastically expand and contract, which is one of the
key focus areas of the proposed solution.

The proposed solution was primarily tested with on-
premise private cloud infrastructure; however, the design
could theoretically be adapted to run in hybrid cloud or edge
computing designs as well. An in-depth discussion of the
solution and the need to scale beyond the cluster boundary can
be found in [13].

Figure 1. Ubiquitous computing powered by Kubernetes cluster

autoscaling

The solution consists of virtual machines that make up the
Kubernetes platform running on ESXi hosts, managed by
VMware vCenter. This design choice was made due to market
penetration analysis of virtualization in private clouds,
according to Smart Profile’s analysis in 2017, VMware held
seventy five percent of the server virtualization market [14].
The selection of Kubernetes as the container orchestration
platform was based on its widespread adoption in the market

and the fact that it has become commonly known as the
standard for container orchestration. Within the Kubernetes
virtual machines are Linux operating systems based on
Ubuntu 16.04.5 LTS, which in turn have Docker runtime
17.03.3-ce installed, providing the container execution
environment. Ubuntu was selected as it is the standard
platform for K8s, while Docker was selected due to its tight
integration with K8s and wide industry adoption. In order to
manage the container-based workloads, Kubernetes v1.13.0
provided a container orchestration platform which consisted
of 3 master nodes and 3 worker nodes, which are the base of
the unscaled cluster configuration. A minimum of three
master nodes are required to establish a redundant control
plane, as this is required for etcd to maintain quorum should
a single master node fail. The VM scaling solution was based

on Foreman Version 1.19.1. Foreman is a complete lifecycle
management tool for physical and virtual servers. The
Foreman implementation was deployed as a virtual machine
based on CentOS Linux 7 (Core). Foreman was selected as it
is completely FOSS as opposed to many market contenders,
as well as its tight integration with VMware products and
adaptability to other platforms. The installation of Foreman
utilized a collection of Puppet modules and configured the
Puppet master at version 5.5.8 to control both Foreman and
the scaled Kubernetes worker node VMs from the same
server.

The ingress solution, which was based on HA-Proxy
version 1.6.3 was run on additional virtual machines based on
Ubuntu 16.04.5 LTS. The HA-Proxy design choice was based
on it being FOSS and its wide industry adoption. In addition
to these servers there was a VM used to manage the
Kubernetes cluster and act as the CA (Certificate Authority).
The Public Key Infrastructure (PKI) server used was CFSSL,
CloudFlare's PKI/TLS toolkit and was selected due to
widespread usage on K8s and available documentation.

The virtual machines in which the Kubernetes nodes run
should be distributed across a minimum of three physical
ESXi nodes, with anti-affinity rules configured on the vCenter
to separate the VMs in a single-master and single-worker node
per physical ESXi host configuration. This design is intended
to provide redundancy to support the ubiquitous computing
devices allowing the solution to remain entirely functional in
the event of virtual machine or physical host failure.

The container network was implemented using Weave
Net. Weave Net implements industry standard VXLAN
encapsulation between hosts to create a virtual overlay
network that connects Docker containers across multiple hosts
and enables their automatic discovery.

Communication with the containerized applications
running within the Kubernetes environment was established
by initiating connections through separate virtual machines
configured to run HA-Proxy version 1.6.3 in a Virtual Router
Redundancy Protocol (VRRP) Active/Active Cluster
configuration. HA-Proxy was then configured to relay
connections to the Kubernetes ingress API, which manages
external access to services within the cluster. This design
contributed to the level of redundancy required for the solution
to support the dynamic workloads. The HA-Proxy VMs
should be governed by anti-affinity rules in the vCenter
environment forcing them to run on separate physical ESXi
hosts to increase their redundancy.

The ability for this solution to elastically scale virtual
machines on the vCenter managed IaaS platform was provided
by the lifecycle management tool named Foreman. Foreman
interfaces with the vCenter API to trigger creation of
additional virtual machines, based on preconfigured
templates. The templates were hosted on the vCenter platform
and contained the base Linux OS based on Ubuntu 16.04.5
LTS, with the Kubelet package and configuration scripts
preinstalled.

The Foreman tool managed both the Dynamic Host
Configuration Protocol (DHCP) and Domain Name System
(DNS) solutions. DHCP was based on Internet Systems
Consortium, Inc. (ISC) DHCP, and DNS was based on ISC
DNS which is based on Berkeley Internet Name Domain
(BIND) version 9.

Scaling worker nodes was initiated via a vCenter alarm
which triggered once a specified Central Processing Unit
(CPU) or Memory threshold was reached and maintained for
a defined number of minutes within a control VM, which was
one of the worker nodes in the base configuration of the
Kubernetes cluster. Configuration of the vCenter alarm can be
seen in figure 2. The control VM selection can be any worker
node in the cluster however only a single VM should be
monitored in order to avoid scaling multiple VMs
simultaneously. The reason any worker node can be selected
is due to the Horizontal Pod Autoscaler (HPA) distributing
Pods onto all available worker nodes at the time of initial
scaling. The alarm was configured to execute a bash script
hosted on the vCenter server when it fires. The performance
metrics affected by the synthetic application load can be seen
in figure 3.

Figure 2. The vCenter create-VM alarm

Synthetic application load that triggered elastic scaling
was generated using a tool named Locust, this tool simulated
users accessing a web app hosted in a Pod within the
Kubernetes cluster. This page performed CPU intensive
calculations purely to simulate load. In a real-world scenario
this application would be based on AI code that interacts with
the relevant ubiquitous computing devices. The synthetic load
generated by Locust can be seen in figure 4.

Figure 3. Control VM’s CPU performance metrics with load.

Figure 4. The Locust tool generating load.

The bash script was configured to execute a separate script
on the remote Foreman server which performed multiple
functions. First a hostname with a random unique integer
appended was generated, both stored as a variable and written
to a text file. The script then called the Command Line
Interface (CLI) tool for Foreman, named Hammer. Switches
were passed to the Hammer CLI tool, which include the
unique hostname which was stored as a variable, as well as
switches that instruct Foreman to create a VM from template,
based on preconfigured values within Foreman, such as which
template to instruct the vCenter to clone, number of vCPUs
etc. Various preconfigured values exist within the Foreman
tool which allow Hammer to trigger a preconfigured VM build
process. The process the script follows to create the scaled
Kubernetes worker nodes can be seen in figure 5.

Figure 5. The create VM script process

When the Hammer CLI tool executes the API call to
Foreman, several tasks are initiated. First an API call to the
vCenter server is made calling for a clone to be created from
the preconfigured template, with the same name passed as the
hostname switch via the CLI. Next a DHCP reservation is
created based on the Media Access Control (MAC) address
returned from the vCenter server during the API call, which is
the configured MAC address of the new VM, using an
available Internet Protocol (IP) address from the configured
DHCP pool of addresses. A DNS A and PTR record are then
added to the BIND zone file listing the hostname previously
passed as a switch to the Hammer tool, with the same IP
address configured in the DHCP reservation based on the
newly created VMs MAC address. This allows the VM to boot
with an expected IP address and hostname, allowing Puppet to
connect to the VM once booted and complete configuration.

Configuration of the scaled VMs once booted is controlled
by the Puppet tool, which Foreman interacts with via its API.
A preconfigured Puppet script which is hosted within
Foreman is executed on the booted VM via the Puppet master
and is used to perform various functions, including an update
of installed packages, installation of new packages if required
and perform any other defined configuration tasks. As part of
the Puppet script, the hostname is configured to be the same
as that registered in DNS, then a command is executed to join
the scaled VM to the Kubernetes cluster as a worker node. For
the command to function indefinitely a non-expiring bootstrap
token was generated on the Kubernetes platform.

For the solution to automatically downward scale both
VMs and K8s worker nodes, a separate vCenter alarm was
configured to monitor CPU or Memory and trigger when the
configured threshold is below the defined threshold for a
defined number of minutes. The alarm configuration can be
seen in figure 6. When the alarm is triggered a script is
executed on the vCenter server to remove the worker node
from the Kubernetes cluster and power the VM down and
delete it. This activity can be seen in figure 7. The script
process to delete Kubernetes worker nodes and their
associated VMs can be seen in figure 8.

Figure 6. The vCenter delete-VM alarm.

Figure 7. VM deletion triggered by load reduction.

The bash script used to scale inwards or remove worker

nodes and VMs called a separate script which was run on the
remote Foreman server where several commands and
additional scripts were also executed.

Figure 8. The delete VM script process

First, Secure Copy (SCP) was called to copy the text file
containing the scaled VM names created during execution of
the upward-scaling script to the VM used to manage the K8s
cluster. SCP was then called again to copy the same text file
to the Foreman VM. A separate bash script was then called
from within the script to execute on the remote K8s
management VM and remove the scaled worker node from the
cluster. The script used the Linux sed command to parse the
top line of the text file for the relevant hostname and passed
that into the kubectl delete node command as a switch. Once
the remote script used to remove the K8s node completed, a
second script was called from within the original script to
execute on the remote Foreman server, again parsing the top
line of the text file containing scaled hostnames using the
Linux sed command, then passing that as a variable to the
Hammer CLI command to delete the specified VM. The
Hammer CLI tool then called the vCenter API to power the
VM down and delete it. The sed command was then used to
remove the first line from the file containing hostnames, this
allowed the process to complete on any additional scaled
VMs.

The process proved to be a robust solution for
automatically and elastically scaling K8s worker nodes hosted
on the vSphere IaaS platform. As application load increased
within the Kubernetes cluster, available resources were
consumed on all available worker nodes. This triggered elastic
scale-out which introduced more resources into the cluster,
making them available to serve existing and further increased
load. As application load was either decreased or removed

entirely the solution triggered scale-in activity removing all
unnecessary worker nodes in the cluster.

The cost savings gained through this form of elastic cluster
scaling, based on public cloud VMs referenced in [15], are
US$0.10 per virtual machine/hour. Based on these figures,
increasing the cluster size with three additional nodes will cost
approximately $219 per month, whereas elastically scaling out
as needed within the month may cost US$50.40 based on
typical usage*. This reduction in costs could equate to as much
as a 76.99% saving.

*Typical usage is defined as intermittent bursts with a
maximum of 1 week per month.

IV. DISCUSSION

This solution brings with it a vast number of use cases. In
addition to the two scenarios listed, it could be used to support
medical, law enforcement, agriculture, traffic and a myriad of
other use cases.

Possibly one of the most crucial aspects of this solution is
security. Any system that is aware of the location and
movement of people is likely to be a target for nefarious
individuals and systems to exploit the data. Not only will
securing the data be paramount, how the system uses that data
could lead to dangerous situations. For example, should the AI
be implemented in an untrustworthy or unsafe manner, crowds
fleeing towards an exit could be obstructed by doors closing
rather than opening. Threat agents who gain access to the
system or data and can manipulate its functionality could in
theory force the system to act in a dangerous manner.

During testing the HPA was found to distribute workload
unevenly amongst available worker nodes. Under load across
3 nodes and 20 scaled Pods, a variance of as much as a 20%
CPU activity was witnessed. Based on this the control VM
selection should be based on analysed workload distribution
within the environment.

While the solution can horizontally scale by adding Pods
to existing worker nodes very fast through the HPA, the much
slower speed at which it can scale the cluster by adding new
worker nodes should be taken into consideration when
configuring alarm thresholds. Under testing conditions scaled
worker nodes were only active in the Kubernetes cluster 6-8
minutes after threshold alarms fired and triggered VM builds.
This is due to several factors such as the hardware type and
configuration, amount of time it takes to clone the VM from
template, boot the operating system, configure it and join it to
the Kubernetes cluster.

Based on the amount of time it takes to complete the elastic
scaling activity, the solution should be configured to only
respond to reasonable periods of increased load on the system.
Should the alarm threshold be configured to fire after short
periods of increased load, VMs may still be in the process of
creating while the load drops below the requirement for that
added worker node. Should the alarm thresholds be
configured to fire only after extended periods of time, user
experience may be impacted. Careful consideration should be
taken to determine alarm threshold parameters to cater for
each of these factors.

While the base system is configured with three worker
nodes, which the solution is not able to automatically reduce
past that, additional worker nodes can manually be added to
the base configuration in which case the solution would only
scale once usage across all existing base nodes exceeds the
configured threshold. Therefore, when the solution is
deployed, a performance baseline should be taken to
determine the optimal number of worker nodes required for
the system to run optimally and the base number of worker
nodes adjusted accordingly.

Configuration of the MaxPods value in the HPA should be
carefully evaluated as it could inhibit the efficacy of the
solution. Once the MaxPods value is reached, the Pods will no
longer scale within the cluster unless this value is set large
enough or until it is increased once worker nodes are added.
Dynamically adjusting the HPA MaxPods value as part of the
elastic scaling activity would be effortless to implement.

Testing of the solution was conducted using synthetic load
based on a containerized web application that performed a
CPU intensive mathematical calculation every time the web
page was hit, based on the K8s HPA example Pod. Load was
generated by using a tool named Locust, which is an open
source load testing tool [16]. In order to generate load that
proved enough to maintain above 70% CPU utilization on the
control VM, 300 users were simulated at a hatch rate of 300.

This solution could yield positive results by hosting the
base cluster on private cloud architecture for security reasons,
while elastically scaling either into a hybrid cloud design or
onto edge devices to increased accessibility and reduced
latency and bandwidth consumption.

V. CONCLUSION AND FUTURE WORK

While this research was based on a proprietary IaaS
solution, additional research could produce an entirely FOSS
solution. Foreman has built-in support for oVirt and libvirt
which can be leveraged; however, the alarming solution will
also need to be adapted as it is currently based on vCenter
performance alarms. Use of Prometheus and Alertmanager
would likely yield positive results in triggering VM builds
through the Foreman API. This solution provides a
dynamically scaling support infrastructure for ubiquitous
computing which can be used in a variety of different use
cases. Running AI, although not a requirement, is likely to
yield advances in in the field.

This research provides a discussion on scalability issues
but the issue of security within such devices remains a concern
as previously mentioned. Whilst many solutions have been put
forward [17, 18] it is clear that attacks on ubiquitous devices
and their associated AI applications hosted on cloud
infrastructure can range from issues regarding privacy to
endangering lives [19]. Further issues in ubiquitous and cloud
computing include the human aspects [20] including
interaction and design and contextual usage. It is clear that
much research in this field is yet to be done.

ACKKNOWLEDGMENT

The authors would like to thank Letterkenny Institute of

Technology for their funding of this research work.

REFERENCES

[1] Gubbi, J., Buyya, R., Marusic, S. and Palaniswami, M., 2013. Internet
of Things (IoT): A vision, architectural elements, and future directions.
Future generation computer systems, 29(7), pp.1645-1660.

[2] Li, M., Zhang, Z., Huang, K. and Tan, T., 2008, December. Estimating
the number of people in crowded scenes by mid based foreground
segmentation and head-shoulder detection. In 2008 19th International
Conference on Pattern Recognition (pp. 1-4). IEEE.

[3] F. Xiao et al., “One More Tag Enables Fine-Grained RFID Localization
and Tracking,” IEEE/ACM Trans. Networking, vol. 26, no. 1, Jan.
2018, pp. 161–74

[4] Xiao, F., Guo, Z., Ni, Y., Xie, X., Maharjan, S. and Zhang, Y., 2019.
Artificial Intelligence Empowered Mobile Sensing for Human Flow
Detection. IEEE Network, 33(1), pp.78-83..

[5] Satyanarayanan, M., 2001. Pervasive computing: Vision and
challenges. IEEE Personal communications, 8(4), pp.10-17.

[6] Aguilera, X.M., Otero, C., Ridley, M. and Elliott, D., 2018, July.
Managed Containers: A Framework for Resilient Containerized
Mission Critical Systems. In 2018 IEEE 11th International Conference
on Cloud Computing (CLOUD) (pp. 946-949). IEEE.

[7] Shi, W., Cao, J., Zhang, Q., Li, Y. and Xu, L., 2016. Edge computing:
Vision and challenges. IEEE Internet of Things Journal, 3(5), pp.637-
646.

[8] Lorido-Botrán, T., Miguel-Alonso, J. and Lozano, J.A., 2012. Auto-
scaling techniques for elastic applications in cloud environments.
Department of Computer Architecture and Technology, University of
Basque Country, Tech. Rep. EHU-KAT-IK-09, 12, p.2012.

[9] Burns, B., Grant, B., Oppenheimer, D., Brewer, E. and Wilkes, J., 2016.
Borg, omega, and kubernetes.

[10] Guingo, P., Mouilleron, V., Jansen, A. and Damm, G., Alcatel-Lucent
SAS, 2012. Distributed architecture for real-time flow measurement at
the network domain level. U.S. Patent 8,095,640.

[11] Grosz, B.J. and Stone, P., 2018. A Century Long Commitment to
Assessing Artificial Intelligence and its Impact on Society. arXiv
preprint arXiv:1808.07899.

[12] Parnas, D.L., 2017. The real risks of artificial intelligence.
Communications of the ACM, 60(10), pp.27-31.

[13] Thurgood B., Lennon R. G., Elastic Scaling of Kubernetes Cluster
Nodes on Private Cloud Infrastructure, MSc in Cloud Computing,
Letterkenny Institute of Technology, 2019.

[14] Smart Profile. (2017). VMware by far the largest in the server
virtualisation market. Available:
https://www.smartprofile.io/analytics-papers/vmware-far-largest-
server-virtualisation-market/. Last accessed 8th May 2019.

[15] De Assunção, M.D., Di Costanzo, A. and Buyya, R., 2009, June.
Evaluating the cost-benefit of using cloud computing to extend the
capacity of clusters. In Proceedings of the 18th ACM international
symposium on High performance distributed computing (pp. 141-150).
ACM.

[16] Locust.io. Locust – A modern load testing frame-work
2014. Available from: http://locust.io/

[17] Astorga, J, Matías, J., Sáiz, P. and Jacob, E., 2009. Security for
Heterogeneous and Ubiquitous Environments Consiting of Resource-
Limited Devices: An Approach to Authorization Using Kerberos.
Lecture Notes of the Institute for Computer Sciences, Social-
Informatiics and Telecommunications Engineering, 42, pp. 65-77

[18] Shen, J., Liu, D, Shen, J., Liu, Q. and Xingming, S, 2017. A secure
cloud-assisted urban data sharing framework for ubiquitous-cities,
Pervasive and Mobile Computing, 41, pp 219-230.

[19] Kusen, E. and Strembeck, M, 2016. A decade of security research in
ubiquitous computing: results of a systematic literature review.
International Journal of Pervasive Compuitng and Communications,
12, pp. 216-259.

[20] López, G., Marín, G. and Calderón, M., 2016, Human aspects of
ubiquitous computing: a study addressing willingness to use it and
privacy issues, Journal of Ambient Intelligence and Humanized
Computing, 8(4), pp. 497-511.

