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Abstract—Cloud computing and artificial intelligence (AI) 

technologies are becoming increasingly prevalent in the 

industry, necessitating the requirement for advanced platforms 

to support their workloads through parallel and distributed 

architectures. Kubernetes provides an ideal platform for 

hosting various workloads, including dynamic workloads based 

on AI applications that support ubiquitous computing devices 

leveraging parallel and distributed architectures. The rationale 

is that Kubernetes can be used to support backend services 

running on parallel and distributed architectures, hosting 

ubiquitous cloud computing workloads. These applications 

support smart homes and concerts, providing an environment 

that automatically scales based on demand. While Kubernetes 

does offer support for auto scaling of Pods to support these 

workloads, automated scaling of the cluster itself is not 

currently offered. In this paper we introduce a Free and Open 

Source Software (FOSS) solution for autoscaling Kubernetes 

(K8s) worker nodes within a cluster to support dynamic 

workloads. We go on to discuss scalability issues and security 

concerns both on the platform and within the hosted AI 

applications.  

Keywords—Autoscaling, Kubernetes, Artificial Intelligence, 
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I. INTRODUCTION  

Devices that are compatible with ubiquitous computing 
are typically small in order to allow them to remain 
unobtrusive, which generally limits their processing power 
and ability to run Artificial Intelligence (AI) based 
applications.  AI applications processing the information from 
devices on the sensor network allow the devices to adapt to 
the environment efficiently as more data becomes available. 
Transferring the data to and from the sensor network can be 
achieved by leveraging technologies such as Radio Frequency 
Identification (RFID) technology, Wireless Sensor Networks 
(WSN) or Near Field Communication (NFC) devices [1]. 
Another method that can be used to overcome this limitation 
is to leverage a single device within the sensor network 
capable of internet connectivity, such as a smartphone or 
tablet device. A single device with internet connectivity within 
the sensor network could allow ubiquitous devices to 
communicate with cloud-based systems by leveraging the 
device as a proxy. The cloud-based system can then perform 
more complex computations of the data and communicate 
results with the devices and surrounding architecture, while 
also improving user experience.  

Ubiquitous computing devices such as Wi-Fi, RFID or 
WSN enabled armbands sold in the form of concert tickets can 

communicate directly with containerized AI applications 
hosted on the Kubernetes cloud platforms, providing valuable 
information that can be used to both track and predict crowd 
movement. Crowd movement detection can be achieved 
through several methods such as video-based or signal-based 
identification methods. Video-based methods such as Mid 
Based Foreground Segmentation and Head-Shoulder 
Detection [2] are costly to implement as they require both 
cameras and vast amounts of storage to host the video files. 
Signal-based methods for detecting crowd movement 
typically function upon radio frequency identification (RFID) 
[3] tags requiring dedicated sensing equipment to be placed at 
the venue. At present, there is a promising method for 
detecting the number of people in a queue by utilizing the 
widespread Wi-Fi signal to extract the received signal strength 
(RSS) or channel state information (CSI) [4], however these 
methods are unlikely suited for dense crowd counting and 
movement detection within confined spaces. While a 
combination of these crowd movement methods could 
possibly be leveraged to communicate with applications 
hosted on cloud architecture, this paper focuses on the elastic 
scaling of a Kubernetes cluster based on demand.   

Allowing interconnected systems to respond to certain 
types of crowd movements by changing the environment hosts 
a plethora of possibilities. Should an environment be able to 
adjust to certain types of crowd movements, for instance by 
widening or opening additional doorways, not only could user 
experience be improved, overcrowding hazards could also be 
prevented.  

Smart homes connected via sensors to containerized AI- 
based applications running on Kubernetes could improve 
living experiences of users by automatically adjusting the 
environment within the home. Adjusting elements such as 
lighting, temperature and music to the needs of the user could 
vastly improve experience in an unobtrusive manner. 
Ubiquitous computing within the home powered by 
Kubernetes and its ability to auto scale provides endless 
possibilities to automating and improving living experiences.  

As more devices join the network, the cloud-based system 
in turn is required to scale in accordance with load in order to 
maintain stability and provide the best user experience in a 
sustainable method. While commercial cloud-based solutions 
such as Google Kubernetes Engine (GKE) provide this 
functionality in public clouds, as of the time of writing no free 
and open source solution existed for elastically scaling private 
cloud or on-premise K8s clusters. This paper introduces a Free 
/ Open-Source Software (FOSS) solution based on Kubernetes 
(K8s). The Infrastructure as a Service (IaaS) layer of this 



 

 

solution is currently based on VMware vSphere technology in 
a private cloud model which is both proprietary and costly, 
however the solution can easily be adapted to leverage 
platforms such as oVirt or libvirt to make it entirely FOSS, 
with only the likes of server and networking hardware 
incurring cost. The solution is also adaptable to elastically 
scale into hybrid cloud architectures and leverage edge 
computing.  

II. RELATED WORK 

Cloud computing can take many forms, supporting various 

devices which are backed by a myriad of supporting 

infrastructure.  

A. Ubiquitous Computing 

While ubiquitous computing is intended to work 
transparently to the user [5], advanced levels of computation 
are required for the solution to remain effective, which the 
sensor devices are typically incapable of. Having a single 
device on the sensor network capable of internet 
communication will allow the sensor data to be uploaded to 
the cloud and analysed before instructions are made available 
for the devices to download and execute. In order to achieve 
these advanced levels of computation and AI processing a 
containerized cloud-based system [6] running on Kubernetes 
is proposed. This solution will need to auto-scale based on 
load, as it would be difficult to predict load on the system as 
users interact more and move in and out of network coverage 
areas, as is the norm in ubiquitous computing. 

 

B. Edge and Fog Computing 

Edge computing, commonly referred to as just “edge”, 

brings processing close to the data source, eliminating the 

need for the data to be sent to a remote cloud or other 

centralized system for processing. Elimination of the distance 

and time it takes to transport data to centralized sources 

improves the speed and performance of data transport which 

in turn improves applications performance on the edge. Edge 

computing can potentially address the concerns of response 

time and bandwidth constraints inherent with cloud 

computing [7]. 

Fog computing is a defined standard of how edge 

computing should work. It facilitates the operation of 

compute, storage and networking services between edge 

devices and cloud computing hosted in the datacentre.  

 

C. Infrastructure as a Service 

Cloud-based systems capable of elastically scaling [8] 

and interacting with ubiquitous computing sensor networks 

require an Infrastructure as a service component such as 

VMware vSphere to run the workloads. This layer provides 

computational abilities far beyond that of individual 

ubiquitous computing devices on the sensor network and 

provides an environment for the Kubernetes cluster nodes to 

both run and scale. Thus, IaaS can be exploited to support 

Ubiquitous Computing. 

 

D. Container as a Service 

Artificial intelligence components of ubiquitous 

computing systems should run in containerized environments 

following 12-factor designs. This design will allow them to 

scale as required and to accommodate the unpredictable load 

sensor networks will place on the system [9]. Kubernetes 

provides an ideal platform for this type of workload. While 

K8s does provide a scaling service known as the Horizontal 

Pod Autoscaler (HPA), functionality to elastically scale the 

number of cluster worker nodes is not currently offered 

within the platform itself. The clusters ability to 

automatically scale would enable scaling support for 

ubiquitous computing beyond the limits of the cluster, not 

only on the user facing components but on the operational 

and supporting services as well. In order to successfully 

support ubiquitous computing, it is proposed that all elements 

of the system elastically scale vertically and horizontally on 

demand. Horizontal scaling will be implemented in the form 

of increasing compute resources through additional worker 

nodes rather than vertical scaling which entails adding 

resources to existing nodes. Horizontal scaling was selected 

as it requires zero downtime as apposed to vertical scaling 

which requires hosts to be powered down before adding 

additional resources.   

 

E. Distributed Architecture 

Distributed architecture is a software system with 

interconnections between a collection of independent 

systems. Coordination and communication is established 

between the systems through API calls or message passing, 

with the intention of achieving a common goal. This type of 

architecture can be leveraged extensively in various designs 

including but not limited to application, infrastructure and 

network design [10].    

 

F. Artificial Intelligence 

Artificial intelligence technologies are becoming 

increasingly prevalent, with their impact on individuals and 

societies varying widely [11]. While AI has no generally 

accepted definition, the term obscures the actual mechanism, 

with the possibility of hiding untrustworthy methods [11]. 

Implementation of AI methods without rigorous integrity can 

lead to devices and systems that are untrustworthy and 

sometimes dangerous [12]. Systems that are aware of the 

location of dense crowds of people and which control 

mechanisms such as opening and closing of doors can have 

profound negative impact if not implemented in a failsafe 

trustworthy manner.  

 

 

III. PROPOSED SYSTEM AND ITS PARAMETERS  

Cloud and ubiquitous computing in the context of this 
paper may take the form of a smart home with interconnected 
devices throughout, consisting of the user wearing a smart 
watch that interacts with distributed sensors, all 
communicating via Wi-Fi with the containerized AI 
application hosted on Kubernetes. The sensor network could 
not only turn lights on when a room in entered, a variety of 
other functions could be performed based on the constantly 
uploaded sensor data to the Kubernetes cloud platform which 
processes the data and can provide constant feedback to the 
sensor network. The AI applications could trigger actions such 



 

 

as setting of ambient lighting or relaxing music based on 
mood, posture or a variety of other factors.  

Having the ubiquitous computing sensor network respond 
to both physical motions, number of inhabitants and various 
other inputs would allow for a fully interactive experience in 
an unobtrusive manner. As the number of users interacting 
with the platform are likely to fluctuate, as family and guests 
come and go, or new sensor networks are onboarded, the 
platform is able to automatically scale both in the form of 
containers spinning up as required within the cluster, and the 
cluster itself scaling new worker nodes as the number of 
containers consume the capacity of the cluster.  

Another scenario in which ubiquitous computing devices 
can leverage the cloud platform would be through the form of 
sensor network connected armbands sold as concert tickets. 
As users enter the arena, the platform could be used to track 
the number of concertgoers entering the stadium, which 
entrances were used, compressed areas within the arena that 
require attention as well as several other use cases, particularly 
in emergency situations should they arise. Having a flood of 
devices either join or leave the network requires a platform 
that can elastically expand and contract, which is one of the 
key focus areas of the proposed solution. 

The proposed solution was primarily tested with on-
premise private cloud infrastructure; however, the design 
could theoretically be adapted to run in hybrid cloud or edge 
computing designs as well. An in-depth discussion of the 
solution and the need to scale beyond the cluster boundary can 
be found in [13].  

 

Figure 1. Ubiquitous computing powered by Kubernetes cluster 

autoscaling 

 

The solution consists of virtual machines that make up the 
Kubernetes platform running on ESXi hosts, managed by 
VMware vCenter. This design choice was made due to market 
penetration analysis of virtualization in private clouds, 
according to Smart Profile’s analysis in 2017, VMware held 
seventy five percent of the server virtualization market [14]. 
The selection of Kubernetes as the container orchestration 
platform was based on its widespread adoption in the market 

and the fact that it has become commonly known as the 
standard for container orchestration. Within the Kubernetes 
virtual machines are Linux operating systems based on 
Ubuntu 16.04.5 LTS, which in turn have Docker runtime 
17.03.3-ce installed, providing the container execution 
environment. Ubuntu was selected as it is the standard 
platform for K8s, while Docker was selected due to its tight 
integration with K8s and wide industry adoption. In order to 
manage the container-based workloads, Kubernetes v1.13.0 
provided a container orchestration platform which consisted 
of 3 master nodes and 3 worker nodes, which are the base of 
the unscaled cluster configuration. A minimum of three 
master nodes are required to establish a redundant control 
plane, as this is required for etcd to maintain quorum should 
a single master node fail. The VM scaling solution was based 

on Foreman Version 1.19.1. Foreman is a complete lifecycle 
management tool for physical and virtual servers. The 
Foreman implementation was deployed as a virtual machine 
based on CentOS Linux 7 (Core). Foreman was selected as it 
is completely FOSS as opposed to many market contenders, 
as well as its tight integration with VMware products and 
adaptability to other platforms. The installation of Foreman 
utilized a collection of Puppet modules and configured the 
Puppet master at version 5.5.8 to control both Foreman and 
the scaled Kubernetes worker node VMs from the same 
server. 

 

The ingress solution, which was based on HA-Proxy 
version 1.6.3 was run on additional virtual machines based on 
Ubuntu 16.04.5 LTS. The HA-Proxy design choice was based 
on it being FOSS and its wide industry adoption. In addition 
to these servers there was a VM used to manage the 
Kubernetes cluster and act as the CA (Certificate Authority). 
The Public Key Infrastructure (PKI) server used was CFSSL, 
CloudFlare's PKI/TLS toolkit and was selected due to 
widespread usage on K8s and available documentation.   

The virtual machines in which the Kubernetes nodes run 
should be distributed across a minimum of three physical 
ESXi nodes, with anti-affinity rules configured on the vCenter 
to separate the VMs in a single-master and single-worker node 
per physical ESXi host configuration. This design is intended 
to provide redundancy to support the ubiquitous computing 
devices allowing the solution to remain entirely functional in 
the event of virtual machine or physical host failure.  

The container network was implemented using Weave 
Net. Weave Net implements industry standard VXLAN 
encapsulation between hosts to create a virtual overlay 
network that connects Docker containers across multiple hosts 
and enables their automatic discovery. 

Communication with the containerized applications 
running within the Kubernetes environment was established 
by initiating connections through separate virtual machines 
configured to run HA-Proxy version 1.6.3 in a Virtual Router 
Redundancy Protocol (VRRP) Active/Active Cluster 
configuration. HA-Proxy was then configured to relay 
connections to the Kubernetes ingress API, which manages 
external access to services within the cluster. This design 
contributed to the level of redundancy required for the solution 
to support the dynamic workloads. The HA-Proxy VMs 
should be governed by anti-affinity rules in the vCenter 
environment forcing them to run on separate physical ESXi 
hosts to increase their redundancy.  



 

 

The ability for this solution to elastically scale virtual 
machines on the vCenter managed IaaS platform was provided 
by the lifecycle management tool named Foreman. Foreman 
interfaces with the vCenter API to trigger creation of 
additional virtual machines, based on preconfigured 
templates. The templates were hosted on the vCenter platform 
and contained the base Linux OS based on Ubuntu 16.04.5 
LTS, with the Kubelet package and configuration scripts 
preinstalled.  

The Foreman tool managed both the Dynamic Host 
Configuration Protocol (DHCP) and Domain Name System 
(DNS) solutions. DHCP was based on Internet Systems 
Consortium, Inc. (ISC) DHCP, and DNS was based on ISC 
DNS which is based on Berkeley Internet Name Domain 
(BIND) version 9.  

Scaling worker nodes was initiated via a vCenter alarm 
which triggered once a specified Central Processing Unit 
(CPU) or Memory threshold was reached and maintained for 
a defined number of minutes within a control VM, which was 
one of the worker nodes in the base configuration of the 
Kubernetes cluster. Configuration of the vCenter alarm can be 
seen in figure 2. The control VM selection can be any worker 
node in the cluster however only a single VM should be 
monitored in order to avoid scaling multiple VMs 
simultaneously. The reason any worker node can be selected 
is due to the Horizontal Pod Autoscaler (HPA) distributing 
Pods onto all available worker nodes at the time of initial 
scaling. The alarm was configured to execute a bash script 
hosted on the vCenter server when it fires. The performance 
metrics affected by the synthetic application load can be seen 
in figure 3.  

 

Figure 2. The vCenter create-VM alarm 

Synthetic application load that triggered elastic scaling 
was generated using a tool named Locust, this tool simulated 
users accessing a web app hosted in a Pod within the 
Kubernetes cluster. This page performed CPU intensive 
calculations purely to simulate load. In a real-world scenario 
this application would be based on AI code that interacts with 
the relevant ubiquitous computing devices. The synthetic load 
generated by Locust can be seen in figure 4.  

 

 

Figure 3. Control VM’s CPU performance metrics with load.  

 

 

Figure 4. The Locust tool generating load. 

The bash script was configured to execute a separate script 
on the remote Foreman server which performed multiple 
functions. First a hostname with a random unique integer 
appended was generated, both stored as a variable and written 
to a text file. The script then called the Command Line 
Interface (CLI) tool for Foreman, named Hammer. Switches 
were passed to the Hammer CLI tool, which include the 
unique hostname which was stored as a variable, as well as 
switches that instruct Foreman to create a VM from template, 
based on preconfigured values within Foreman, such as which 
template to instruct the vCenter to clone, number of vCPUs 
etc. Various preconfigured values exist within the Foreman 
tool which allow Hammer to trigger a preconfigured VM build 
process. The process the script follows to create the scaled 
Kubernetes worker nodes can be seen in figure 5. 

 

 

Figure 5. The create VM script process 

 



 

 

When the Hammer CLI tool executes the API call to 
Foreman, several tasks are initiated. First an API call to the 
vCenter server is made calling for a clone to be created from 
the preconfigured template, with the same name passed as the 
hostname switch via the CLI. Next a DHCP reservation is 
created based on the Media Access Control (MAC) address 
returned from the vCenter server during the API call, which is 
the configured MAC address of the new VM, using an 
available Internet Protocol (IP) address from the configured 
DHCP pool of addresses. A DNS A and PTR record are then 
added to the BIND zone file listing the hostname previously 
passed as a switch to the Hammer tool, with the same IP 
address configured in the DHCP reservation based on the 
newly created VMs MAC address. This allows the VM to boot 
with an expected IP address and hostname, allowing Puppet to 
connect to the VM once booted and complete configuration.  

 

Configuration of the scaled VMs once booted is controlled 
by the Puppet tool, which Foreman interacts with via its API. 
A preconfigured Puppet script which is hosted within 
Foreman is executed on the booted VM via the Puppet master 
and is used to perform various functions, including an update 
of installed packages, installation of new packages if required 
and perform any other defined configuration tasks. As part of 
the Puppet script, the hostname is configured to be the same 
as that registered in DNS, then a command is executed to join 
the scaled VM to the Kubernetes cluster as a worker node. For 
the command to function indefinitely a non-expiring bootstrap 
token was generated on the Kubernetes platform.  

 

For the solution to automatically downward scale both 
VMs and K8s worker nodes, a separate vCenter alarm was 
configured to monitor CPU or Memory and trigger when the 
configured threshold is below the defined threshold for a 
defined number of minutes. The alarm configuration can be 
seen in figure 6. When the alarm is triggered a script is 
executed on the vCenter server to remove the worker node 
from the Kubernetes cluster and power the VM down and 
delete it. This activity can be seen in figure 7. The script 
process to delete Kubernetes worker nodes and their 
associated VMs can be seen in figure 8.  

 

Figure 6. The vCenter delete-VM alarm. 

 

 

Figure 7. VM deletion triggered by load reduction. 

 
The bash script used to scale inwards or remove worker 

nodes and VMs called a separate script which was run on the 
remote Foreman server where several commands and 
additional scripts were also executed.  

 

Figure 8. The delete VM script process 

First, Secure Copy (SCP) was called to copy the text file 
containing the scaled VM names created during execution of 
the upward-scaling script to the VM used to manage the K8s 
cluster. SCP was then called again to copy the same text file 
to the Foreman VM. A separate bash script was then called 
from within the script to execute on the remote K8s 
management VM and remove the scaled worker node from the 
cluster. The script used the Linux sed command to parse the 
top line of the text file for the relevant hostname and passed 
that into the kubectl delete node command as a switch. Once 
the remote script used to remove the K8s node completed, a 
second script was called from within the original script to 
execute on the remote Foreman server, again parsing the top 
line of the text file containing scaled hostnames using the 
Linux sed command, then passing that as a variable to the 
Hammer CLI command to delete the specified VM. The 
Hammer CLI tool then called the vCenter API to power the 
VM down and delete it. The sed command was then used to 
remove the first line from the file containing hostnames, this 
allowed the process to complete on any additional scaled 
VMs.   

The process proved to be a robust solution for 
automatically and elastically scaling K8s worker nodes hosted 
on the vSphere IaaS platform. As application load increased 
within the Kubernetes cluster, available resources were 
consumed on all available worker nodes. This triggered elastic 
scale-out which introduced more resources into the cluster, 
making them available to serve existing and further increased 
load. As application load was either decreased or removed 



 

 

entirely the solution triggered scale-in activity removing all 
unnecessary worker nodes in the cluster.    

The cost savings gained through this form of elastic cluster 
scaling, based on public cloud VMs referenced in [15], are 
US$0.10 per virtual machine/hour. Based on these figures, 
increasing the cluster size with three additional nodes will cost 
approximately $219 per month, whereas elastically scaling out 
as needed within the month may cost US$50.40 based on 
typical usage*. This reduction in costs could equate to as much 
as a 76.99% saving.  

*Typical usage is defined as intermittent bursts with a 
maximum of 1 week per month. 

 

 

IV. DISCUSSION 

This solution brings with it a vast number of use cases. In 
addition to the two scenarios listed, it could be used to support 
medical, law enforcement, agriculture, traffic and a myriad of 
other use cases.  

Possibly one of the most crucial aspects of this solution is 
security. Any system that is aware of the location and 
movement of people is likely to be a target for nefarious 
individuals and systems to exploit the data. Not only will 
securing the data be paramount, how the system uses that data 
could lead to dangerous situations. For example, should the AI 
be implemented in an untrustworthy or unsafe manner, crowds 
fleeing towards an exit could be obstructed by doors closing 
rather than opening. Threat agents who gain access to the 
system or data and can manipulate its functionality could in 
theory force the system to act in a dangerous manner.   

During testing the HPA was found to distribute workload 
unevenly amongst available worker nodes. Under load across 
3 nodes and 20 scaled Pods, a variance of as much as a 20% 
CPU activity was witnessed. Based on this the control VM 
selection should be based on analysed workload distribution 
within the environment.   

While the solution can horizontally scale by adding Pods 
to existing worker nodes very fast through the HPA, the much 
slower speed at which it can scale the cluster by adding new 
worker nodes should be taken into consideration when 
configuring alarm thresholds. Under testing conditions scaled 
worker nodes were only active in the Kubernetes cluster 6-8 
minutes after threshold alarms fired and triggered VM builds. 
This is due to several factors such as the hardware type and 
configuration, amount of time it takes to clone the VM from 
template, boot the operating system, configure it and join it to 
the Kubernetes cluster.  

Based on the amount of time it takes to complete the elastic 
scaling activity, the solution should be configured to only 
respond to reasonable periods of increased load on the system. 
Should the alarm threshold be configured to fire after short 
periods of increased load, VMs may still be in the process of 
creating while the load drops below the requirement for that 
added worker node. Should the alarm thresholds be 
configured to fire only after extended periods of time, user 
experience may be impacted. Careful consideration should be 
taken to determine alarm threshold parameters to cater for 
each of these factors.  

While the base system is configured with three worker 
nodes, which the solution is not able to automatically reduce 
past that, additional worker nodes can manually be added to 
the base configuration in which case the solution would only 
scale once usage across all existing base nodes exceeds the 
configured threshold. Therefore, when the solution is 
deployed, a performance baseline should be taken to 
determine the optimal number of worker nodes required for 
the system to run optimally and the base number of worker 
nodes adjusted accordingly.   

Configuration of the MaxPods value in the HPA should be 
carefully evaluated as it could inhibit the efficacy of the 
solution. Once the MaxPods value is reached, the Pods will no 
longer scale within the cluster unless this value is set large 
enough or until it is increased once worker nodes are added. 
Dynamically adjusting the HPA MaxPods value as part of the 
elastic scaling activity would be effortless to implement.  

Testing of the solution was conducted using synthetic load 
based on a containerized web application that performed a 
CPU intensive mathematical calculation every time the web 
page was hit, based on the K8s HPA example Pod. Load was 
generated by using a tool named Locust, which is an open 
source load testing tool [16]. In order to generate load that 
proved enough to maintain above 70% CPU utilization on the 
control VM, 300 users were simulated at a hatch rate of 300. 

This solution could yield positive results by hosting the 
base cluster on private cloud architecture for security reasons, 
while elastically scaling either into a hybrid cloud design or 
onto edge devices to increased accessibility and reduced 
latency and bandwidth consumption.  

V. CONCLUSION AND FUTURE WORK 

While this research was based on a proprietary IaaS 
solution, additional research could produce an entirely FOSS 
solution. Foreman has built-in support for oVirt and libvirt 
which can be leveraged; however, the alarming solution will 
also need to be adapted as it is currently based on vCenter 
performance alarms. Use of Prometheus and Alertmanager 
would likely yield positive results in triggering VM builds 
through the Foreman API. This solution provides a 
dynamically scaling support infrastructure for ubiquitous 
computing which can be used in a variety of different use 
cases. Running AI, although not a requirement, is likely to 
yield advances in in the field.  

This research provides a discussion on scalability issues 
but the issue of security within such devices remains a concern 
as previously mentioned. Whilst many solutions have been put 
forward [17, 18] it is clear that attacks on ubiquitous devices 
and their associated AI applications hosted on cloud 
infrastructure can range from issues regarding privacy to 
endangering lives [19]. Further issues in ubiquitous and cloud 
computing include the human aspects [20] including 
interaction and design and contextual usage. It is clear that 
much research in this field is yet to be done. 
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